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Thermal convection in a magnetic fluid 
By A B D E L F A T T A H  ZEBIB 

Department of Mechanical and Aerospace Engineering, Rutgers University, Piscataway, 
NJ 08855, USA 

(Received 17 January 1996 and in revised form 18 March 1996) 

A theoretical study of the character and stability of thermomagnetic flow in a 
microgravity environment is performed. Convection is driven owing to imposed radial 
magnetic and temperature gradients in a cylindrical shell containing a ferrofluid. 
Linear, nonlinear, and computational methods are employed. It is shown that 
convection sets in as a stable supercritical bifurcation. Results obtained for a specific 
shell configuration are in good agreement with experiments. 

1. Introduction 
Natural convective motions occur on Earth owing to density variation with 

temperature in the gravitational body force field. This, of course, has important 
practical applications in many processes involving thermal management. In the 
microgravity environment of space this free convection ceases to exist. An alternative 
may be provided by the use of magnetic fluids and manipulating existing magnetic 
fields. These ferrofluids are colloidal suspensions of magnetic particles, about 10 nm, 
in ordinary fluids such as water, kerosene, or organic liquids. A surfactant coating is 
used to prevent coalescence of the particles (Rosensweig 1985, 1987). Commercial 
production of these magnetic fluids has resulted in their use in a number of engineering 
applications (Berkovsky, Vedvedev & Krakov 1993). The magnetic particles are 
influenced by thermal Brownian motion and in the absence of a magnetic field the net 
magnetization is zero. An external magnetic field of intensity H will tend to align the 
dipole moments of the particles. Thus a net magnetization M develops and is a 
decreasing function of temperature. If, in addition, the applied magnetic field is non- 
uniform in space, a force ,uo A4 V H  (p,, is the permeability of free space) will act on the 
fluid in the direction of increasing field. In the presence of a temperature gradient the 
variation of M can induce fluid motion (analogous to density variation in buoyant 
convection). If V T  is parallel to V H  then a situation of thermal instability develops 
similar to the Rayleigh-Benard problem. Thermomagnetic instability in a fluid layer 
heated from below was considered by Finlayson (1970). More recently, Stiles & 
Blennerhassett (1993) determined the influence of a radial temperature gradient on 
Couette flow of a ferrofluid. 

The present paper is concerned with an internally heated cylindrical shell. A radial 
magnetic field is produced by an electric current through the cylinder axis. Polevikov 
& Fertman ( 1977) used a finite-difference method to compute buoyant-magnetic 
convection. They only considered two-dimensional azimuthal states and established 
critical conditions for transition from extrapolation to zero motion. Odenbach (1993) 
carried out a drop tower experiment with a shell of aspect ratio 0.46. His temperature 
measurements of nonlinear convection indicated a motion with 4 counter-rotating 
azimuthal cells and his extrapolated value for the critical magnetic Rayleigh number 
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agreed well with that computed by Polevikov & Fertman (1977). In this paper we 
present a reasonably complete study of the problem. Linear stability methods are used 
to determine critical states. Asymptotic methods are then employed to establish the 
stable supercritical nature of the bifurcations. We show that onset of convection in 
Odenbach's cylinder is indeed three-dimensional. We carry out direct numerical 
simulations using finite-volumes to study the resulting motions. This is followed by 
numerical experiments with a variety of initial conditions from which we conclude that 
the azimuthal motion observed by Odenbach regains stability and is the preferred form 
of convection at increasing nonlinearity. 

2. Mathematical model 
The motion is described in a cylindrical coordinate system ( r ,  19, z).  We consider an 

incompressible fluid-filled infinitely long cylindrical shell of inner and outer radii R, 
and R,, with the aspect ratio Y,I = R,/R, < 1. The inner and outer cylindrical surfaces 
are isothermal at temperatures TI and T,  (AT = TI - T,  > 0), respectively. An 
azimuthal magnetic field with intensity H,,(r), is generated owing to an electric current 
I along the inner cylinder according to : 

The formulation of the equilibrium continuum model described in Bashtovoy, 
Berkovsky & Vislovich (1988) is adopted. It is assumed that the magnetic field intensity 
H and magnetization M are parallel with M = ( M / H )  H,  and M determined by an 
equation of state M(T,  p, H ) .  The magnetic fluid is assumed to retain its Newtonian 
character with an additional Maxwellian stress tensor -,u,,(H2/2) Sij + Hi Bj ,  where the 
magnetic induction B = ,uu,(M+ H ) .  Maxwell's equations require that V .I3 = 0, and 
for a non-conducting medium V x H = 0. The non-inductive approximation is adopted 
so that the field intensity remains as given in (1). A linear magnetic equation of state 
is taken according to : 

M = M 0 -  K(T- To), (2) 

where K is the pyromagnetic coefficient, and subscript 0 denotes equilibrium reference 
values. We scale the Navier-Stokes equations using d = R,- R,: K/d, d 2 / K ,  AT, ,uK/d2 
for length, velocity, time, temperature, and pressure, respectively, where, K is the 
thermal diffusivity, and ,u is the dynamic viscosity. With all thermodynamic properties 
assumed constant, the non-dimensional equations of motion, with zero gravitational 
force as appropriate to a microgravity environment, are: 

0. v =  0, ( 3  4 

In (3) r1 and r2 = r ,+  1 are the non-dimensional radii ((RJd) = ~ / ( l  -y), 
R,/d = 1 /( 1 - Y,I), respectively), and the magnetic Rayleigh number R, = ,uuo KGA Td3/  
~ K V .  G is the magnetic gradient AH,,/d, where AH,, is the drop in H ,  across the 
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fluid layer, L' is the kinematic viscosity, the Prandtl number Pr = Y / K ,  and e, is a unit 
radical vector. It  is seen that the role played by the magnetic field is similar to that of 
buoyancy in a Boussenisq fluid (e.g. Busse & Riahi 1982). The boundary conditions 
associated with (3) are : 

V = 0 on r = r1 and r2, (4 a) 

T =  1 on r = r l ,  (4 b) 

T=O on r = r 2 .  (4 c) 

3. Linear stability 
The system (3) and (4) admits the conduction solution: 

v =  0, ( 5  a) 

( 5  b) T = T, = In (r/r2)/ln?j. 

This solution, however, can become unstable and convection initiated if the strength 
of the applied magnetic field, or the applied temperature difference increases, or simply 
at some critical value of R,. A linear stability analysis can be performed by assuming 
disturbances to the solution in ( 5 )  of the form @, VT, Vi,, Vz,O)(r)exp{~t+inO+ikz}, 
where n and k are azimuthal and axial wavenumbers, respectively. The resulting 
linearized equations are : 

in 
r 

D*V,+-  V,+ikV, = 0, 

Pr 

0- 

Pr 

0- -VZ = - i k p +  
Pr 

D * D - k 2 - -  0- V, Ti, n21 rz 

with D = d/dr, and D* = (d/dr) + ( l / r ) .  The boundary conditions require 
{ V,, Vo, V,, 0} = 0 at r , ,  r2 .  In addition, because of periodicity, the wavenumber 
n is restricted to the integers. This system defines an eigenvalue problem for 
n(n, k, 7, Pr;  Rm). Exchange of stabilities could not be shown analytically, and in 
general 0- is expected to be complex valued. 

There are three possible distinct patterns of motions. A two-dimensional azimuthal 
motion with k = 0 of the type observed by Odenbach (1993). A two-dimensional 
meridional motion with n = 0 similar to Taylor cells (Chandrasekhar 1961). Also 
possible is three-dimensional convection with both n and k non-zero. When n =k 0, one 
can eliminate p and V, and derive an eighth-order system for V,, V,, and 0 with 
boundary conditions { V,, D V,, Vz, 0) = 0 at rl, r2 .  Likewise, when k =k 0, one can 
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FIGURE 1. Stability surface in n - k - R ,  space for = 0.46. The critical state is three-dimensional 
with n = 3, k = 2.04, and R ,  = 1802.36. 

eliminatep and V, and derive an eighth-order system for V,, V@, and 0 with boundary 
conditions { V,,DV,, Ve, 0) = 0 at rl, r2. These systems are then solved using a 
pseudospectral Chebyshev method (Gottlieb & Orszag 1977) with Eispack routines 
employed for computing the eigenvalues of the resulting generalized matrix eigenvalue 
problems. In addition, pseudospectral solutions of (6) without elimination of p was 
also accomplished (this was needed in $4 for solving the bifurcation problem of three- 
dimensional states). The three approaches, involving solutions of different differential 
systems, produced identical solutions which served as a check. It was found that all 
critical states computed for all values of 7, n, k,  and Pr are stationary with a = 0. Thus, 
as evident from (6), critical conditions are independent of Pr. 

For a given 7, v = 0 states define a three-dimensional surface in n - k -  R, space. 
This surface is shown in figure 1 for 7 = 0.46 which corresponds to Odenbach's (1993) 
drop-tower experiment. The minimum R, determines the critical state and occurs at 
n = 3, k = 2.04, and R, = 1802.36. The value of R, agrees well with both the 
experiment and the computations of Polevikov & Fertman (1977). A close-up on the 
critical point of figure 1 is obtained by taking cross-sections at constant values of n. The 
results shown in figure 2 indicate bunching of modes near Rmcr. Thus, while linear 
theory predicts a three-dimensional onset, there are other competing states in the 
vicinity and nonlinear analyses and computations are necessary to further clarify the 
situation. We find three-dimensional onset of motion, while experiments predict an 



Thermal convection in a magnetic.fluid 125 

0 I 2 3 
k 

FIGURE 2. Stability curves for q = 0.46 generated from n = 0-5 sections of the stability surface in 
figure 1. Azimuthal convection occurs first with n = 4 and R ,  = 183 1.23, while meridional motions 
are possible with k = 3.1 and R, = 1940.99. 

0 0.2 0.4 0.6 0.8 

r 
FIGURE 3. Critical R, as function of q.  There are patches of q with constant ncr with k,, (not shown) 

increasing with q on each patch. RmCr + the plane layer value 1707.76 as q+ 1. 

n = 4 motion with no indication of whether it be two or three dimensional. It should 
be noted that the critical R ,  for two-dimensional azimuthal convection with n = 4 and 
k = 0 is a very close 183 1.23, while the lowest value for onset of meridional convection 
with n = 0 and k = 3.1 is a distant 1940.99. The apparent discrepancy between linear 
theory and experiments will be addressed by subsequent nonlinear considerations (the 
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axial magnetic field used in the experiments to align the convection along the axis may 
influence the dynamics and may contribute to this apparent discrepancy). 

The influence of 7 on linear instability is summarized in figure 3 .  It is seen that R, 
decreases with 7. While n,, increases with 7, there are patches of 9 with constant ncr. 
On these patches, k,, also increases with 7. As 7 + l(r,, r2 + a), the governing 
equations (6) are transformed to those of the Bknard problem (Chandrasekhar 1961) 
using < = r - r , ,  D = D* = d/d<, n = r1 m, and a total wavenumber a2 = m2 + k2. Thus 
R,,, asymptotically approaches 1707.76 as shown in figure 3 .  The fact that the limiting 
operator is self-adjoint, implies both that exchange of stabilities holds, and that stable 
supercritical bifurcation (Joseph 1976) is expected with 7 = 1. The former result is 
consistent with our solutions of equations (6) with "1 i- 1, and the latter will be shown 
to also hold with 9 + 1. 

CT 

r o o o o  0 
- 

o o o o y ' y 2  
r2 

0 0 0 0  0 
0 0 0 0  0 

M = O O O O  0 ,  

- - 

4. Bifurcating solutions 
Linear considerations predict a single critical state for each 7. It also shows the 

clustering of eigensolutions and thus various nonlinear branches are expected to exist 
near onset. The character of nonlinear states as well as their stabilities will be 
determined in $ 5  using direct numerical solutions of equations ( 3 )  and (4). In this 
section we determine properties of bifurcating solutions following the asymptotic 
methods of Schliiter, Lortz & Busse (1965) and Busse & Riahi (1982). Because 
magnetic fluids have Prandtl numbers about 10 or larger, we will restrict attention to 
the case of infinite Pr.  This simplifies the algebra, and the assumption will be seen in 
the next section to be accurate. First, we write equations (3) in the form (with 

where, with primes denoting r derivatives, 

l o  - Ti 0 0 v2 

and 
N = (o,o, 0, 0, v. ve)T, 
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- 7 

0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0  
0 0 0 0 0 '  

M+ = 

0 ~ 0 0 0  
r2 - - 

Next, we introduce the expansions : 

where E is the small convection amplitude and we only consider terms up to O(s3) in 
this paper. At O(E)  we find: 

(L + M) X(l) = 0, (9 a)  

with homogeneous boundary conditions { V,., V,, V,, 0)"' = 0 at rl ,  r2 .  The solution for 
S1) is of course that given in 5 3  suitably normalized, e.g. = 1 at r = r , ,  and can 
be written in the form: 

with R('), n, and k being any of the critical states (bifurcation points) of stability 
surfaces similar to the one in figure 1. 

At O(t2) we find: 

(L + R'"A4) 3') = - R(')MIY(') +N(X1', x"'). (10) 

Solutions of the non-homogeneous system in (10) are only possible if the right-hand 
side is orthogonal to solutions of the adjoint homogeneous problem : 

( L + + R ( " M + ) X +  = 0 .  

The adjoint operators l+  and Mt are given by: 

0 0 v2 0 i 
?z 

0 0 0 0 v2 
-_ 
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such that (X’, L X )  = (X ,  L+X+) and (X+,  NIX) = (X ,  NI+X+) with the inner product: 

p+(r) cosnO coskz 
VT(r) cosnO coskz 

X+ = Vi(r) sinno coskz 
Vi(r )  cosne sinkz 
@+(r) cosnB coskz - - 

(X ,  3’) = l : r d r f d O f d z X .  Y. 

, 

- 
p f ) ( r )  + p z ) ( r )  cos 2n0 + p p ) ( r )  cos 2kz +pzi (r )  cos 2n0 cos 2kz - 
c)(r) + v’,:Jr) cos 2nO + Vi,:)(r) cos 2kz + v’,,”,’(r) cos 2nO cos 2kz 

v’,”,’(r) cos 2kz + v’,”,’,(r) cos 2n0 cos 2kz 
O f ) ( r )  + @p)(r)  cos 2nO + @ f ) ( r )  cos 2kz + @ t i ( r )  cos 2n8 cos 2kz 

$2) = f l t ) ( r )  cos 2nO + cnL(r) cos 2nB cos 2kz 

- - 

with X’ satisfying the same homogeneous conditions as x”), and a normalization 
condition, e.g. @+‘ = 1 at r = rl. Like Z1), X+ is computed using Chebyshev 
pseudospectral solution of (1 1 a). 

With X(l) given by (9b), we evaluate the right-hand side of (10) as 

n 
r 

n q u  @(1)‘--@(1) y l ) - k @ ‘ 1 ’  y1) 
0 r 

0 
yy @(1)’-- @(I) v(1) 

r 

’ (14) 
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n k From (19) Numerical 
3 0 6 2 3 7 x  6 2 4 5 x  10 
4 0 7 6 5 0 x  7 6 5 4 x  
5 0 7 2 5 7 x  lo-' 7 2 5 9 x  10 ' 
0 3 1 6658x 6661 x 10 * 
3 2 0 4  4 7 8 9 x  lo--' 4 7 8 4 x  10 * 

uniform 40 x 40, 50 x 50, and 30 x 30 x 30 meshes, respectively 
TABLF 1 Slope of Nu-R,  lines at bifurcation rH, rz, and rB: numerical values are computed on 

where c,, = 2, and c, = 1, m 3 1. I t  is observed that the arbitrary normalizations of 
S1) and X+ have no influence on the sign of R(2) .  However, the normalization of S1) 
does influence the magnitude of R ( 2 ) .  Enhancement of heat transfer by convection, 
which is of primary interest in applications, is measured by the Nusselt number, Nu, 
which is the ratio of convective to diffusive transfer and is given by 

(18) 

Thus r j  Or) ' ( r j ) ,  , j  = 1, 2 must be a constant which can be easily shown for two- 
dimensional bifurcations with either n = 0 or k = 0. This condition also served as a 
check on the numerical evaluations. As in the case of R(2) ,  the value of Nu, for a given 
value of E ,  is dependent on the normalization of X", however the slope of the Nu-Ra 
line at bifurcation is not, and is given by 

Nu = 1 + t2cn ck In (7) r j  @ c ) ' ( r j )  (j' = 1, 2). 

The results of computations with 17 = 0.46 for the pair of two-dimensional bifurcations, 
and the critical three-dimensional motion, are given in table 1. It is found that R(2)  > 0 
for the cases listed. Thus all bifurcations are supercritical. In addition, the critical 
three-dimensional motion is stable (Joseph, 1976). Table 1 lists the slopes of the Nu-Ra 
curves at bifurcation given by (19) and as found in the next section from numerical 
solutions of (3) and (4). The agreement is excellent and serves as a check on the 
computer code. 

5. Direct numerical solutions 
Sections 3 and 4 provide information at the onset of convection. In particular, with 

q = 0.46, a three-dimensional motion with n = 3 and k = 2.04 is predicted at 
R,, = 1802.36 as a stable supercritical bifurcation. The properties of this motion as the 
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G 
F 
E 
D 
C 
B 
A 
9 
8 
7 
6 
5 
4 
3 
2 
1 

2.06131 
1.161 61 
1.47403 
1.1804 
0.886756 
0.59118 
0.299479 
0.005 84 
0 

-0.287799 
-0.581 438 
-0.875076 

- 1.46235 
- 1.75599 

- 1.16872 

-2.04963 

FIGURE 4. Streamlines of the two-dimensional n = 4, k = 0 azimuthal convection at R, = 2500 
produced on a 30 x 80 uniform mesh with initial condition (20). 7 = 0.46 and Pr = 1 .  There are 8 
mirror-image vortices. 

amplitude of convection E increases can only be determined numerically. Thus in this 
section we only consider a finite cylindrical shell with periodicity conditions at z = 0 
and 27c/k. As R,, increases beyond the critical value, an azimuthal, two-dimensional 
motion with n = 4 becomes possible at R, = 1831.23. At yet higher values of R, these 
two distinct motions compete and the form of realizable convection can only be 
determined from computations with arbitrary initial conditions. We construct these 
numerical solutions by the finite volume procedure described by Bottaro & Zebib 
(1989). Briefly, the computational domain is divided into cylindrical cells with the grid 
points located at the geometric centres of these small cells. Additional boundary points 
are included to incorporate the boundary conditions. The discretized equations are 
obtained by integrating the conservation equations over the cells and assuming local 
linear variations in any of the primitive variables. Thus, our scheme is second-order 
accurate in space. Pressure-velocity coupling is as described in Patankar, 1980. 
Staggered location for the velocity components is adopted to avoid unrealistic pressure 
fields and associated numerical instabilities. Time marching toward steady states is 
accomplished by a fully implicit first-order forward Euler scheme. While the computer 
code has been previously verified, the full agreement with the asymptotic results of $4 
provide yet additional verification for the numerics. 

5.1. Two-dimensional solutions 
Figure 4 is a plot of n = 4  and k = O  azimuthal streamlines, the motion observed 
experimentally by Odenbach (1993) at R, = 2500 and Pr = 1. This steady convection 
was initiated according to 

V = 0, T = T, + c1 sin (7cOln) sin ( r  - r J ,  (20) 
with a small amplitude el, typically < 0.1. It is immediately obvious that there are 2n 
mirror-image vortices. Thus all subsequent computations are performed in a wedge 
r1 ,< r d rz ,  0 < 0 < n/n with symmetry azimuthal boundary conditions. Solutions in 
such wedges corresponding to n = 3,4,  5 (the corresponding critical R,, respectively, 
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c 1.91175 
F I7843 
I: I65685 
D I5294 
C 140195 
B 1.2745 
A I14705 
9 I0196 
8 089215 
7 0 7647 
6 063725 
5 05098 
4 038235 
3 0254Y 
2 012745 
I 0  

(a ) 

G O  G 1.73151 
F - 0  145701 F I 61607 

E I50064 
D -0.437104 D I38521 
C -0582805 C I26977 
B -0726506 B I I5434 
4 -0.874208 A 10389 
Y - 1  01991 9 0.92347 
X - I  16561 8 0808036 
7 131131 7 0.692603 

6 0.577169 h ~ 145701 
5 160271 5 0461735 
4 -1.74841 4 0.346301 
3 - 1  89412 3 0230868 
2 -203982 2 I) 115434 
I 2 18552 i n  

FIGURE 5.  Streamlines similar to a single vortex of figure 4 produced on a 40 x 40 uniform mesh and 
with (u )  n = 3, (h )  4 and (c) 5 ,  Pr = 1, = 0.46, and R,,, = 2500. The motion is fastest with n = 4 
as expected. 

Nu 

1800 2300 2800 3300 3800 

R, 
FIGURE 6. Nusselt numbers for different two-dimensional azimuthal motions computed on different 
wedges similar to those in figure 5.  Each curve represents three values of Pr:  1, 10 and 100. The values 
are so close that a single line appears on this scale. A large change in R,n can produce motions with 
2n wedges as happened with n = 3. Note that the branch with n = 6 can be continued down to 
R, = 2334 which is the corresponding critical value. 
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G 2.48495 
F 2.31928 
E 2.15362 
D 1.98196 
c 1.82229 
B 1.65663 
A 1.49097 
9 1.3253 
8 1.15964 
7 0.993919 
6 0.828316 
5 0.662652 
4 0.496989 
3 0.331326 
2 0.165663 
1 0  

FIGURE 7. Meridional motion with k = 3.1, Pr = co, 7 = 0.46, and R, = 2500, 
produced on a 40 x 40 uniform mesh. 

are 2063.75,1831.23, and 1956.62), R, = 2500, and Pr = 1 are shown in figure 5. These 
solutions were produced on a uniform 40 x 40 mesh. The negligible influence of Prandtl 
numbers 3 1 on convection is seen from the resulting Nu-Ra plots shown in figure 6. 
Thus subsequent results are for infinite Pr which is computationally less expensive. 

Likewise, meridional solutions in Y, 6 r 6 r ,  and 0 < z 6 n/k  are produced with 
initial conditions of the form 

V = 0, T = T, + el sin (7czlk) sin ( r  - r l ) .  (21) 
Streamlines produced on a 40 x 40 uniform mesh, with k = 3.1, n = 0, R, = 2500, and 
Pr = co, are shown in figure 7. 

5.2. Three-dimensional solutions 
Three-dimensional solutions are produced in the wedge rl d r d r,, 0 6 0 ,< 7c/n and 
0 6 z 6 n / k  with initial conditions of the form 

V = 0, T = T, + el sin (nzlk) sin (nO/n) sin (v- r , ) .  (22) 
Figure 8 shows the Nu-R, plots produced from computations with 203, 243 and 263 
uniform meshes. The resulting motion, computed on the 263 uniform mesh, can be 
visualized from isothermal-surface plots like the one shown in figure 9 with R, = 2500 
and Pr = 00 from which the fluid velocity can be deduced by observing that it ‘pushes’ 
the isotherms. 

Nusselt numbers of the three convective patterns for values of R, just beyond onset 
are shown in figure 10. As expected, first a three-dimensional motion occurs, followed 
by azimuthal convection, and later meridional motion is also possible. For these 
weakly nonlinear states the dependence of Nu on R, is almost linear with slopes in 
perfect agreement with the asymptotic results in table 1, as mentioned earlier. It is clear 
from figure 10 that azimuthal convection becomes more efficient in heat transfer than 
the three-dimensional motion for R, 3 1890. Thus, one has to consider the possibility 
that azimuthal convection may become the stable and preferred form of convection at 
higher R, in agreement with the maximum heat transport hypothesis of Malkus 
(1 954). 
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1.87  

1.6 

N u  1.4 

1.2 

1 .o 
1750 2250 2750 3250 3750 4250 

R m  
FIGURE 8. Nusselt numbers of preferred three-dimensional convection with n = 3, k = 2.04, Pr = co, 
and = 0.46 computed on three uniform meshes. As in all results in this paper, the critical R,, 
obtained from nonlinear computations increases as the mesh is refined with the limiting value as 
obtained from linear theory. A 263 mesh is adequate for the range of Rm, indicated. 

L .eve1 
5 
4 
3 
2 
1 

Ternperatui 
1 .oo 
0.75 
0.50 
0.25 
0 

1.6 

1.2 

0.8 

0.4 

0 

0.4 
0.2 
0 

FIGURE 9. Isothermal surfaces of the R,n = 2500 convection of figure 8 on a 263 mesh. The sense of 
motion can be visualized as the fluid motion tends to ‘push’ the isotherms (counterclockwise in the 
(x, =)-plane and clockwise in the top (x,y)-plane). As in figures 4, 5 and 7, the motion can be reversed 
to produce a companion mirror image. 
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Nu 

FIGURE 10. Nu-R, lines at bifurcation of the n = 3 and k = 2.04 three-dimensional, n = 4 azimuthal, 
and k = 3.1 meridional states, produced with 263, 402, and 40' meshes, respectively. The slopes of 
these lines (with slightly finer meshes) at onset of convection are listed in table 1 and are in excellent 
agreement with those obtained from the asymptotic value (19). 

Initial 
conditions, 

6,  and cz are 
R,  defined in (23) Final state 

1820 el = 0.1 

1850 el = 0.1 

1875 
1900 
1925 el = 6, = 0.1 n = 4; 2D 
1950 el = 0.1 n = 4 ; 2 D  

n = 4 ; 2 D  
2000 €1 = E2 = 0.0 n = 4 ; 2 D  

n = 4 ; 2 D  

n = 3;  k = 2.04; 3D 
n = 3;  k = 2.04; 3D 
n = 3;  k = 2.04; 3D 
n = 3; k = 2.04; 3D 
n = 3; k = 2.04; 3D 
n = 3; k = 2.04; 3D 

€1 = E2 = 0.1 

el = E ,  = 0.1 
el = c2 = 0.1 
el = c2 = 0.1 

El = e2 = 0.1 

El = E2 = 0.1 
TABLE 2. Stability using three-dimensional calculations on a 20 x 20 x 108 roz uniform mesh 

5.3. Stability of nonlinear states 
We determine the form of stable convection from calculations with initial conditions 
having contributions from competing states. These are of the form 

"2 . "6' V =  0, T =  T,+ 

with n, = 3, k, = 2.04, and nz = 4. Computations are performed in the cylindrical shell 
rl d r d r2,0 d 6' < 2" and 0 d z d n / k ,  and thus both three-dimensional and 
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azimuthal convection are realizable. A 20 x 20 x 108 mesh was used for computational 
economy and the results are given in table 2. For values of R, 3 1925 the results are 
conclusive. With various combinations of el and e2 either 0 or 0.1, the finaly steady 
state is n = 4 azimuthal convection in apparent agreement with experiments. For 
values of R, d 1875 we conclusively recover steady three-dimensional solutions from 
a variety of initial conditions. The case R, = 1900 required an extremely large number 
of iterations with the final steady state being three-dimensional. This then appears to 
be very close to the R ,  value at transition to stable two-dimensional n = 4 states, and 
compares favourably with the value at transition to the state of higher heat transport 
(R ,  = 1890) deduced from figure 10 with different truncation errors associated with 
different meshes. 

6. Concluding remarks 
We have considered thermal convection in a magnetic fluid. The particular 

impressed magnetic field was such that a radial body force field exists. This led to a 
potentially unstable situation in the presence of a radial temperature gradient. Linear, 
nonlinear, and computational techniques were used to study the phenomena. The 
results produced are in agreement with available experimental observation. Further 
quantitative comparison with experiments is desirable and there is need for additional 
experiments. Modification of the theory with allowance for a perturbed magnetic field 
can also be performed if necessary. There appears to be a great potential for 
engineering applications of magnetic fluids in microgravity. Furthermore, and from a 
fundamental viewpoint, the possibility of producing a magnetic field with a resulting 
central body force is exciting. Experiments on thermal instabilities in spherical shells 
with applications to mantle convection would be possible and verification of existing 
theories (Busse & Riahi 1982; Zebib 1993) can be pursued. 
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